

Question Paper

Module 6:	Power and Au	tomation	
Date:	Time:	Duration:	
13 May 2015	09:30 - 12:00	2½ hours	

You should have the following for this examination: **one answer book; pencil, pen and ruler.**

All questions carry equal marks. The maximum marks for each section within a question are shown. Answer **ALL SEVEN** questions, starting each new question (1-7) on a **new** page of the answer book.

1.	a)	Explain the difference between a mechanised mill and an automated mill.	(2 marks)
	b)	State SIX advantages of a fully automated mill.	(6 marks)
	c)	State what is measured in EACH of the following units:	(4 marks)
		i) Volts;	
		ii) Ohms;	
		iii) Amps;	
		iv) Watts.	
2.	a)	 When designing a mill's electrical distribution system, describe the first planning stage. 	(3 marks)
		 ii) Explain how diversity is applied when designing an electrical distribution system. 	(3 marks)
	b)	Define the term "Power Factor".	(1 mark)
	c)	State the main causes for low power factor and how they may be corrected.	(3 marks)
	d)	Explain why low power factor should be corrected.	(2 marks)
2	a)	Describe a three-phase squirrel cage motor	(2 marks)
5.	а <u>ј</u> ь)	With the side of electric advantice TUDE to use of drive helt that sould	
	D)	be used to transmit power.	(6 marks)
	c)	i) Sketch and label the main parts of a roller chain.	(2 marks)
		ii) Explain why it is important that a roller chain is correctly tensioned.	(2 marks)

continued overleaf

4.	a)	Describe the significance of terminal velocity in pneumatic conveying systems.	(2 marks)
	b)	Describe BOTH a positive pressure conveying system AND a negative pressure conveying system, fully explaining the differences	(0,, (1,))
		between them.	(8 marks)
	c)	Describe how manually to balance a negative pressure conveying system.	(2 marks)
5.	a)	i) Explain why it is essential to measure position.	(2 marks)
		ii) Describe THREE milling examples of where it is essential to measure	
		position.	(3 marks)
		iii) Describe THREE devices used to measure position.	(3 marks)
	b)	Describe the FOUR main forms of Tachometer.	(4 marks)
6.	a)	With the aid of sketches, describe how plant is controlled by:	
		i) Traditional relay-based controls;	(4 marks)
		ii) Programmable Logic Control (PLC).	(4 marks)
	b)	State the main differences between PLC and relay control systems.	(3 marks)
	c)	State the TWO advantages of using PLC in the mill.	(1 mark)
7.	a)	Describe the TWO main types of digital processor.	(4 marks)
	b)	 With the aid of a sketch, describe the design of a complete process control system; 	(3 marks)
		ii) Describe how remote parts of the process can be controlled in this system.	(3 marks)
	c)	State FOUR other devices that may be connected to the data highway.	(2 marks)